drag reduction by surfactant solutions in gravity driven flow systems

نویسندگان

chirravuri venkata subbarao

yanamala phanikumar yadav,

pulipati king

چکیده

efflux time measurements are carried out for gravity draining of a liquid from a large cylindrical tank (where the flow is essentially laminar) through single exit pipe in the absence and presence of cetyl pyridinium chloride (cpc) surfactant solutions. the variables considered are initial height of liquid in the tank, dia. of tank, length of the exit pipe and concentration of surfactant. the dia. of exit pipe in all the cases however remained constant. drag reduction is expressed as the difference in efflux time in the absence and presence of surfactant solutions. maximum drag reduction at optimum surfactnat concentration is reported. it is observed that during draining, froude number remains constant.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drag Reduction by Surfactant Solutions in Gravity Driven Flow Systems

Efflux time measurements are carried out for gravity draining of a liquid from a large cylindrical tank (where the flow is essentially laminar) through single exit pipe in the absence and presence of Cetyl Pyridinium Chloride (CPC) surfactant solutions. The variables considered are initial height of liquid in the tank, dia. of tank, length of the exit pipe and concentration of surfactant. T...

متن کامل

Drag Reduction by Anionic Surfactant Solutions in Gravity Driven Flow System

This paper presents efflux time experiments performed in the absence and presence of aqueous solutions of Drag Reducing Agents (DRAs) when a liquid is emptied from a large open cylindrical storage tank through an exit piping system. The drag reducing agents studied are Dodecyl benzene sulfonate anionic surfactant and a mixed solution of surfactant and sodium chloride counter ion. The variab...

متن کامل

drag reduction by anionic surfactant solutions in gravity driven flow system

this paper presents efflux time experiments performed in the absence and presence of aqueous solutions of drag reducing agents (dras) when a liquid is emptied from a large open cylindrical storage tank through an exit piping system. the drag reducing agents studied are dodecyl benzene sulfonate anionic surfactant and a mixed solution of surfactant and sodium chloride counter ion. the variables ...

متن کامل

Drag Reduction in Turbulent Flow of Polymer Solutions

Progress in understanding turbulent drag reduction by polymer additives has recently been made on several fronts. The near-wall dynamics of Newtonian turbulence is becoming better understood. Detailed computations of complex flows of model polymer solutions are now possible. Insights into the effects of viscoelasticity have been gained from a number of important model flows, and the understandi...

متن کامل

Growing Surfactant Waves in Thin Liquid Films Driven by Gravity

The dynamics of a gravity-driven thin film flow with insoluble surfactant are described in the lubrication approximation by a coupled system of nonlinear PDEs. When the total quantity of surfactant is fixed, a traveling wave solution exists. For the case of constant flux of surfactant from an upstream reservoir, global traveling waves no longer exist as the surfactant accumulates at the leading...

متن کامل

Drag reduction and solvation in polymer solutions

A model is described which explains drag reduction (DR) in dilute polymer solutions in terms of solvation of macromolecular chains and formation of relatively stable domains. The domains partly suppress the vortex formation, act as energy sinks, and also play a role in mechanical degradation in flow (MDF). We report ultrasonically determined solvation numbers for a series of copolymers with the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of chemistry and chemical engineering (ijcce)

ناشر: iranian institute of research and development in chemical industries (irdci)-acecr

ISSN 1021-9986

دوره 32

شماره 2 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023